
Numerical Solutions of the Diffusion Equation
Using the Finite Element Method

C6.4 Finite Element Methods for PDEs

Jake Bowhay

1 Introduction

The finite element method is ubiquitous in computational science and engineering be-
cause it can handle complex geometries, solve a wide range of equations, and preserve
the original properties of the problem [12]. Due to the complexity associated with
this flexibility, sophisticated software packages such as FEniCS [2] and Firedrake [13]
are often used, as these tools are designed to make the finite element method more
accessible to general scientists and engineers. Furthermore, the aforementioned tools
provide additional features, such as access to sophisticated, performant, and highly
scalable linear and non-linear solvers, such as those provided by PETSc [1]. However,
the abstraction provided by such tools also obscures some of the basic operations
required in the finite element method from the user, such as the assembly of the
stiffness matrix. Hence, for pedagogical reasons, in this report we will detail solving
from scratch a simple model problem, the diffusion equation, on an arbitrary, two-
dimensional domain. The diffusion equation has widespread applications throughout
engineering and the physical sciences and so is a natural choice as an illustrative
example to demonstrate solving a transient problem using the finite element method.

In this report, we convert the strong form of the diffusion equation problem into
a semi-discretised variational form and show its well-posedness. Next, we introduce
a Galerkin approximation leading to a method of lines scheme. The implicit Euler
method is then used to discretise the time derivative, for which we present a stability
and consistency result. Then we show how the finite element method is used to
construct the function space in which the solution lies. Furthermore, we explain how
the mass and stiffness matrices and the forcing vector are computed and used in the
scheme. Finally, we verify the convergence of the numerical scheme on a triangular,
square and pentagonal domain by comparing it against known solutions generated
using the method of manufactured solutions.

2 Problem Statement

The diffusion equation with associated boundary and initial conditions are given in
strong form by 

∂tu− κ∆u = f(x, y, t) in Ω× [0, T],

u = 0 on ∂Ω× [0, T],

u(x, y, 0) = u0(x, y) in Ω,

(1)

1

where Ω ⊂ R2 is a bounded, Lipschitz continuous domain with boundary ∂Ω, κ is
the diffusivity constant, and T > 0 is the final time to solve the problem to. For
simplicity, we only consider homogeneous Dirichlet boundary conditions. Here, for
example, the problem (1) could model heat transfer in a material or the diffusion of
a chemical.

3 Mathematical Background

In this section, we introduce some function spaces and concepts required for the
analysis of (1). Instead of considering the solution u to be a function of both space
and time, it is helpful, for the construction of the variational form and associated well-
posedness proof, to consider u as a function of t with values in a Banach space V .
The elements of V are then functions which only depend on space. Hence, following
[10, 9, 11], we define u by the mapping

u : [0, T] → V, (2)

such that
u(x, y, t) ≡ [u(t)](x, y), (3)

where t ∈ [0, T] and (x, y) is in the domain of the space V .
Next, we proceed to introduce the following function spaces required to construct

the variational form of (1).

Definition 1. Following [10, 11], the Banach space Cj([0, T];V), j ≥ 0, is the space
of V -valued functions that are Cj with respect to t. We define the associated norm as

∥u∥Cj([0,T];V) = sup
t∈[0,T]

j∑
l=0

∥∂l
tu(t)∥V , (4)

where ∂l
tu denotes the time derivative of order l of u.

Definition 2. Following [10, 11], the Banach space Lp((0, T);V), 1 ≤ p ≤ ∞ is
the space of V -valued functions whose norm in V is in Lp((0, T)). We define the
associated norm as

∥u∥Lp((0,T);V) =


(∫ T

0
∥u(t)∥pV dt

) 1
p if 1 ≤ p < ∞,

ess supt∈(0,T)∥u(t)∥V if p = ∞.
(5)

2

Definition 3. Following [10], let p1, p2 ∈ (1,∞) and B0 ⊂ B1 be two reflective
Banach spaces with continuous embeddings. We define the following Banach space

W(B0, B1) = {v : (0, T) → B0; v ∈ Lp1((0, T);B0); ∂tv ∈ Lp2((0, T);B1)}, (6)

with the associated norm

∥u∥W(B0,B1) = ∥u∥Lp1 ((0,T);B0) + ∥∂tu∥Lp2 ((0,T);B1). (7)

Here ∂t denotes the time-derivative of u in the distributional sense.

4 Semi-Discretised Variational Form

In this section, we seek to find a variational form of the problem (1). We note that
it is possible to discretise either in time or space first. Following Ern and Guermond
[10, 9], we take the latter approach, commonly called a method of lines discretisation,
to first find the so-called semi-discretised system. We will then discretise in time in
Section 7.

To find the variational form of (1), we assume f ∈ L2((0, T), H−1(Ω)) and u0 ∈
L2(Ω). Then we multiply (1) by a test function v ∈ V , where V is a space of
sufficiently regular functions, and integrate over Ω, giving∫

Ω

∂tuv dx− κ

∫
Ω

∆uv dx =

∫
Ω

fv dx. (8)

Then we apply Green’s first identity to shift one derivative of the Laplace operator
onto the test function, giving∫

Ω

∂tuv dx+ κ

∫
Ω

∇u · ∇v dx− κ

∫
∂Ω

v(∇u · n) ds =
∫
Ω

fv dx, (9)

where n is the outward pointing unit normal to the surface element ds. We choose v

such that it vanishes on the boundary and hence we see that the correct function space
V to choose test functions from is the Sobolev space H1

0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0}.
We denote the dual of this space by H−1(Ω). Consequently, the surface integral
vanishes giving ∫

Ω

∂tuv dx+ κ

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx. (10)

We define the bilinear form

a(t;u, v) = κ

∫
Ω

∇u · ∇v dx. (11)

3

The bilinearity of a(t;u, v) in u and v trivially follows from the linearity of integration
and the gradient operator. The variational problem is then given by:

Find u ∈ W(H1
0 (Ω), H

−1(Ω)) such that, a.e. t, ∀v ∈ H1
0 (Ω),

⟨∂tu, v⟩H−1,H1
0
+ a(t;u, v) = ⟨f, v⟩H−1,H1

0
,

u(0) = u0.

(12)

Remark 4. ⟨·, ·⟩H−1,H1
0

denotes the duality pair of H−1(Ω) and H1
0 (Ω). As noted in

[10, 9], under the assumption that ∂tu, f ∈ L2((0, T), H−1, (Ω)), the duality pair is
realised through the L2 inner product

(u, v)L2(Ω) =

∫
Ω

uv dx. (13)

5 Well-Posedness of the Semi-Discretised Variational

Form

Next, we prove a series of results to show that (12) has a unique solution. As a
prerequisite, we first introduce the following important inequality which is used to
show the bilinear form is coercive. Then we then proceed to show these results lead
to the well-posedness of (12).

Theorem 5 (Poincaré–Friedrichs inequality [12]). Let Ω be a bounded, Lipschitz do-
main and with a closed boundary ∂Ω that has nonzero measure. Then there exists a
constant K < ∞, known as the Poincaré constant, that only depends on Ω and ∂Ω,
such that ∫

Ω

u2 dx ≤ K

∫
Ω

|∇u|2 dx ∀u ∈ H1
0 (Ω). (14)

Theorem 6 (Measurability of a). The function t 7→ a(t;u, v) is measurable for all
u, v ∈ H1

0 (Ω).

Proof. The bilinear form a(t;u, v) is continuous with respect to time and therefore is
measurable [11, 9].

Theorem 7 (Continuity of a). There exists an M < ∞ such that

|a(t;u, v)| ≤ M∥u∥H1(Ω)∥v∥H1(Ω) for a.e. t ∈ [0, T], ∀v, u ∈ H1
0 (Ω). (15)

4

Proof.
|a(t;u, v)| = κ

∣∣(∇u,∇v)L2(Ω)

∣∣
≤ κ∥∇u∥L2(Ω)∥∇v∥L2(Ω)

≤ κ
(
∥u∥2L2(Ω) + ∥∇u∥2L2(Ω)

) 1
2
(
∥v∥2L2(Ω) + ∥∇v∥2L2(Ω)

) 1
2

= κ∥u∥H1(Ω)∥v∥H1(Ω).

Hence, the continuity of a is satisfied with M = κ.

Remark 8. In the case κ is not constant and is instead defined as κ : Ω× [0, T] → R,
carrying out the same proof mutatis mutandis we would instead find M = ∥κ∥L∞(Ω×[0,T]).

Theorem 9 (Coercivity of a). There exists an α > 0 such that

a(t;u, u) ≥ α∥u∥2H1(Ω) for a.e. t ∈ [0, T], ∀u ∈ H1
0 (Ω). (16)

Proof. From the Poincaré–Friedrichs inequality (Theorem 5) we have

Ka(t;u, u) = κK

∫
Ω

|∇u|2 dx

≥ κ

∫
Ω

u2 dx.

Then, adding a(t;u, u) to both sides we get

(K + 1)a(t;u, u) ≥ κ

(∫
Ω

u2 dx+

∫
Ω

|∇u|2 dx
)

= κ∥u∥2H1(Ω).

Finally, rearranging gives the desired result

a(t;u, u) ≥ κ

K + 1
∥u∥2H1(Ω).

Hence, the coercivity of a is satisfied with α = κ/K+1, where K is the Poincaré
constant.

Remark 10. Again, if κ was instead defined as κ : Ω × [0, T] → R and is bounded
bellow such that κ ≥ κ̃, we would have α = κ̃/K+1.

Theorem 11 (J.L. Lions [10, 9]). As a result of Theorem 6, Theorem 7, and Theo-
rem 9, (12) has a unique solution.

Proof. See [10] or [9].

5

6 Galerkin Approximation

Whilst we have shown the variational problem (12) to be well-posed, the infinite-
dimensional test space V = H1

0 (Ω) is not practical to compute with. Instead, we seek
a solution in the finite-dimensional space Vh ⊂ V . Hence, the Galerkin approximation
to the problem is given by

Find uh ∈ C1([0, T];Vh) such that ∀t ∈ [0, T], ∀vh ∈ Vh,

(∂tuh, vh)L2(Ω) + a(t;uh, vh) = (f, vh)L2(Ω),

uh(0) = u0
h,

(17)

where u0
h = Ihu0 and, as defined in Definition 25, Ih is the global interpolation

operator. The problem given by (17) is a finite system of linear ordinary differential
equations (ODEs). Hence, the existence and uniqueness of the solution follows from
the Picard–Lindelöf theorem [10, 18, 4].

Definition 12 (Lipschitz Map [4]). Let V be a Banach space and F : V → V be a
Lipschitz map, then there is a constant L ∈ R (the Lipschitz constant) such that for
all u, v ∈ V

∥Fu− Fv∥ ≤ L∥u− v∥. (18)

Theorem 13 (Picard–Lindelöf [4]). Given a Banach space V and a Lipschitz map
F : V → V , there exists a unique solution u ∈ C1([0,∞), V) to problemu′(t) = Fu(t) t ≥ 0,

u(0) = u0,
(19)

given initial data u0 ∈ V .

Remark 14. The Lipschitz continuity of (17) in uh follows from the bilinearity and
continuity (Theorem 7) of a. Hence there exists a unique solution uh ∈ C1([0, T], Vh)

to problem (17).

Taking {ϕ1, . . . , ϕN} to be a basis for Vh, then for all t ∈ [0, T] the solution
uh(t) ∈ Vh can be written as

uh(x, y, t) =
N∑
i=1

Ui(t)ϕi. (20)

We then define the stiffness matrix A(t) ∈ RN×N by

Aij(t) = a(t;ϕj, ϕi), (21)

6

the mass matrix M ∈ RN×N by

Mij = (ϕj, ϕi)L2(Ω), (22)

and the forcing vector F(t) ∈ RN by

Fi(t) = (f(x, t), ϕi)L2(Ω). (23)

Since, for simplicity, we are considering κ to be constant, the stiffness matrix is also
constant in time. Hence, from here onwards, we suppress its arguments. We can
rewrite (17) in matrix-vector form asM∂tu(t) = −Au+ F(t), t ∈ [0, T],

u(0) = u0,
(24)

where u(t) ∈ RN is the solution vector and u0 ∈ RN the vector respresentation of
u0h, both with respect to the basis of Vh.

7 Approximation in Time

Now that the problem has been transformed into a finite system of ODEs it remains
to discretise the time derivative. For simplicity, we perform the time discretisation
using the implicit Euler scheme. We note that, in practice, it would be typical to use
a higher-order scheme than this, to achieve faster convergence in time.

To implement the implicit Euler scheme, we introduce a computational mesh in
time. We let the integer m̄ > 2 be the number of temporal steps and hence the time
step size is given by ∆t = T/m̄, where T is the final time to solve to. We denote the
approximation of u(tm) in the scheme by Um, where tm = m∆t for m = 0, 1, . . . , m̄.
The time derivative in the implicit Euler scheme is approximated by

∂tu(tm) ≈
Um+1 − Um

∆t
. (25)

Hence, we can rewrite (24) as a system of linear equations given by(M+∆tA)Um+1 = MUm +∆tF(tm+1),

U0 = u0.
(26)

Here, we are assuming that the mesh used in the spatial discretisation is time-
independent. In the implementation provided in Appendix D, we exploit the sparsity

7

of M and A by storing them as compressed sparse column arrays and by solving (26)
using the interface to UMFPACK [7] provided by SciPy [21]. However, we note that,
for larger problems, it would be necessary to switch to using an iterative method with
a lower asymptotic computational complexity.

7.1 Stability of the Implicit Euler Scheme

Next, we seek to show that the scheme (26) is stable, by which we mean the solution
of the scheme has a continuous dependence on the initial data and the forcing term
f [19]. First, we introduce the following results which are required to show this.

Lemma 15 (Arthmetic-geometric inequality [10]). For non-negative real numbers
{x1, . . . , xn} the following inequality holds

(x1x2 . . . xn)
1
n ≤ 1

n
(x1 + · · ·+ xn). (27)

Corollary 16. When combined with the Cauchy-Schwarz inequality, Lemma 15 im-
plies that, for all γ > 0

(u, v) ≤ γ

2
∥u∥2 + 1

2γ
∥v∥2. (28)

To show the scheme is stable, we note that the scheme can also be written in a
variational form given by(

um+1
h − um

h

∆t
, vh

)
L2(Ω)

+ a(tm+1;u
m+1
h , vh) = (f(x, y, tm+1), vh)L2(Ω), (29)

where um
h denotes the approximation by the scheme to uh(tm), rather than the matrix-

vector notation previously used.

Theorem 17 (ℓ2 Stability [9]). For the solution uht = (u1
h, u

2
h, . . . , u

m̄
h) ∈ (Vh)

m̄ and
sequence of forcing terms ft = (f(x, y, tm))m∈{0,1,...,m̄}, which are a solution to the
scheme (29), we have the following stability result

α∥uht∥2ℓ2([0,T],H1(Ω)) +∆t∥D−
t uht∥2ℓ2([0,T],L2(Ω)) + ∥um̄

h ∥2L2(Ω)

≤ 1

α
∥ft∥2ℓ2([0,T],H−1) + ∥u0

h∥2L2(Ω), (30)

where D−
t is the backwards difference operator and α is coercivity constant.

8

Proof. Following [9], we test (29) with um+1
h and multiply through by ∆t to get(

um+1
h − um

h , u
m+1
h

)
L2(Ω)

+∆ta(t;um+1
h , um+1

h) = ∆t(f(x, y, tm+1), u
m+1
h)L2(Ω). (31)

From the coercivity of a(tm+1; ·, ·) (Theorem 9) we have(
um+1
h − um

h , u
m+1
h

)
L2(Ω)

+∆tα∥um+1
h ∥2H1(Ω) ≤ ∆t(f(x, y, tm+1), u

m+1
h)L2(Ω). (32)

Then, we note the following identity given in [9, 19](
um+1
h − um

h , u
m+1
h

)
L2(Ω)

=
1

2
∥um+1

h ∥2L2(Ω) −
1

2
∥um

h ∥2L2(Ω) +
1

2
∥um+1

h − um
h ∥2L2(Ω), (33)

which, when substituted into (32), gives

∥um+1
h ∥2L2(Ω) − ∥um

h ∥2L2(Ω) + ∥um+1
h − um

h ∥2L2(Ω) + 2∆tα∥um+1
h ∥2H1(Ω)

≤ 2∆t(f(x, y, tm+1), u
m+1
h)L2(Ω). (34)

We apply Corollary 16 to (34) to get

∥um+1
h ∥2L2(Ω) − ∥um

h ∥2L2(Ω) + ∥um+1
h − um

h ∥2L2(Ω) +∆tα∥um+1
h ∥2H1(Ω)

≤ ∆t

α
∥f(x, y, tm+1)∥2L2(Ω). (35)

Finally, summing over m, whilst noting that the first two terms result in a telescoping
sum, and applying the definition of the backwards difference operator and the ℓ2 norm,
we get the required bound given in (30).

7.2 Convergence of the Implicit Euler Scheme

Next, we analyse the error of the scheme, for which we introduce the timescale ρ =

2l2D/K2α, where lD = diam(Ω), α is the coercivity constant, and K is the Poincaré
constant.

Theorem 18 (ℓ2 Error Estimate [9]). Let r ∈ [1, k], where k is the degree of finite
element used in the construction of Vh, and let ut = (u(tm))m∈{0,1,...,m̄}, then there
exist constants c1, c2 > 0 such that

∥ut − uht∥ℓ2([0,T],H1(Ω)) ≤ c1∆t
ρ

ℓD
∥∂ttu∥L2([0,T],L2(Ω))

+ c2h
r

(
M

α
|ut|ℓ2([0,T],Hr+1(Ω)) +

ρ

ℓD
|∂tu|L2([0,T],Hr(Ω)) +

1√
α
|u0|Hr(Ω)

)
, (36)

where h is the maximum side length of a mesh element in the spatial mesh, where α

is the coercivity constant, and M is continuity constant.

9

Proof. The proof of this result is beyond the scope of this report however it begins
with the stability result shown in Theorem 17. See [9] for a complete proof.

Remark 19. From the previous theorem, we note that the scheme converges like
O(hr +∆t) in the ℓ2([0, T], H1(Ω)) norm.

8 Implementation

In the previous sections, we conceived a scheme for solving (1) and showed the ex-
istence and uniqueness of the solution given by the scheme as well as the scheme’s
stability and convergence. In this section, we set out an explanation for how the
scheme implemented in Appendix D works in practice.

8.1 Meshing and a Basis for Vh

In Section 6 we reduced the problem to a finite-dimensional system of equations by
seeking a solution in Vh ⊂ V , called the Galerkin approximation. The finite element
method provides a process for constructing the global space Vh out of local function
spaces P . The first step of the finite element process is subdividing the domain Ω

into a mesh or triangulation, an example of which is shown in Figure 1. To generate
the meshes used in this report we used the Python bindings to the Triangle software
[17] provided by MeshPy [15].

Definition 20 (Mesh [10, 5]). Let Ω ⊂ Rn be a domain, then a mesh Th of Ω is a
union of N < ∞ sets Km, called mesh elements, satisfying the following properties:

i. Ω̄ =
⋃N

m=1 Km.

ii. Each mesh element Km is closed and its interior K̊m is non-empty.

iii. Each distinct pair of mesh elements Km and Kn satisfy K̊m ∩ K̊n = ∅.

iv. The boundary ∂Km of each mesh element Km is Lipschitz continuous.

With the domain triangulated into a mesh, we are then ready to introduce the
definition of a finite element.

Definition 21 (Finite Element [10, 3, 5, 12]). A finite element is a triple (K,P ,N)

where:

i. K is a mesh element, as per Definition 20.

10

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00
y

Figure 1: Example mesh of the domain
Ω = [0, 1]× [0, 1], produced using Trian-
gle [17].

0.0
0.5

1.0x 0.0

0.5
1.0

y

0.0

0.5

1.0

u

Figure 2: Example of a piecewise linear
basis function, also known as a hat func-
tion (based on its appearance).

ii. P is a finite-dimensional space of functions on K.

iii. N = {N1, N2, . . . , Nk} is a basis for the dual space of P.

In this report, for simplicity, we will exclusively use linear Lagrange elements, also
known as the Courant triangle, an example of which is shown in Figure 2. We refer
the interested reader to [3] or [10] for examples of other finite elements. For linear
Lagrange elements, it is clear to see that if u ∈ P is zero at each vertex then u must
be identically zero and, hence, the element is unisolvant.

Definition 22 (Linear Lagrange Elements on Triangles). The linear Lagrange ele-
ment on a triangle (K,P ,N) is defined as the following:

i. K is a triangular mesh element, as per Definition 20, with vertices (x1, y1),
(x2, y2), and (x3, y3).

ii. P = span{1, x, y}.

iii. The basis of N is given by evaluation at the vertices of the mesh element. For
u ∈ P, the basis Ni : P → R is given by Ni(u) = u(xi, yi). The value of u on the
vertices is also known as the degrees of freedom.

To express the solution in Vh it is helpful to introduce the concept of the nodal
basis. This is because, for any uK ∈ P and nodal basis {ϕK

1 , ϕ
K
2 , ϕ

K
3 }, it is possible to

11

express uK as a linear combination of the nodal basis functions such that, for linear
Lagrange elements on triangles,

uK =
3∑

i=1

Ni(u
K)ϕK

i . (37)

Definition 23 (Nodal Basis [12]). A basis {ϕK
1 , . . . , ϕ

K
n } for P is called a nodal basis

if it satisfies Ni(ϕ
K
j) = δij.

Finally, to express the global function space Vh in terms of the set of finite elements,
we need to introduce a local-to-global mapping. The role of the local-to-global map is
to piece together the local function spaces into a global approximation in a continuous
fashion. For each mesh element K, the local degree of freedom is mapped to a global
degree of freedom by the mapping ιK : {1, 2, 3} → {1, 2, . . . , N} where N is the total
number of degrees of freedom. This means that we can define the global degrees of
freedom by

NιK(i)(u) = NK
i (uK), i = 1, . . . , N. (38)

We choose the local-to-global map such that if two local degrees of freedom are
mapped to the same global degree of freedom then they must share the same value
for each function u ∈ Vh, enforcing continuity. We can now also define the local and
global interpolation operators. The global interpolation operator is used in (17) to
interpolate the initial data onto the finite element space.

Definition 24 (Local Interpolation Operator [12]). For a function space V and finite
element (K,P ,N), we define the local interpolation operator Ik : V → P such that
interpolant IK matches the original function u at the degrees of freedom:

IK : u 7→ IKu, (39)

Ni(IKu) = Ni(u) ∀Ni ∈ N . (40)

Definition 25 (Global Interpolation Operator [12]). Let Vh be a function space con-
structed by finite elements. We define the global interpolation operator Ih : V → Vh

such that
(Ihu|)K = IK(u|K). (41)

8.2 Assembly Process

Now we consider how to compute the mass M and stiffness A matrices. An important
insight here is that the finite element basis functions have local support so these

12

matrices will be sparse. Hence, instead of iterating through all pairs of basis functions,
it is computationally more efficient to visit each mesh element and loop over each
permutation of the basis functions belonging to the mesh element to compute a local
mass and stiffness matrix. The local-to-global map can then be used to add these
local contributions to the global mass and stiffness matrix.

To do this, we define a reference element (K̂, P̂ , N̂) with vertices (0, 0), (1, 0), and
(0, 1). The nodal basis of the reference element is then given by

ϕK̂
1 (x̂, ŷ) = 1− x̂− ŷ, ϕK̂

2 (x̂, ŷ) = x̂, and ϕK̂
3 (x̂, ŷ) = ŷ, (42)

where hatted variables represent the reference coordinates. We define a diffeomor-
phism FK such that all mesh elements K can be expressed in terms of the reference
element K̂ by

K = FK(K̂). (43)

Following [19], one such map is the affine transformation given by

x = FK(x̂) =

(
x2 − x1 y2 − y1

x3 − x1 y3 − y1

)(
x̂

ŷ

)
+

(
x1

y1

)
= BKx̂+ bK. (44)

8.2.1 Assembly of Local Stiffness Matrix

Now we have defined a mapping from the reference element to any element in the
mesh we can compute the local stiffness matrix. The entries of the local stiffness
matrix are given by

AK
ij = κ

∫
K

∇ϕK
j · ∇ϕK

i dx. (45)

We then perform a change of coordinates to the reference cell noting that ϕK(x, y)) =

ϕK̂(F−1
K (x, y)) = and therefore, by the chain rule, ∇ϕK = BK

−T ∇̂ϕK̂ . Furthermore,
by elementary vector calculus, we have dx = | detBK| dx̂. Hence, (45) can be written
as

κ

∫
K

∇ϕK
j · ∇ϕK

i dx = κ

∫
K̂

(BK
−T ∇̂ϕK̂

j) · (BK
−T ∇̂ϕK̂

i)| detBK| dx̂. (46)

We note that since we are using linear Lagrange elements, ∇̂ϕK̂ is constant and
therefore can be brought outside of the integral, leaving an integrand of one. This
means the integral is reduced to computing the area of the reference element, which
by elementary geometry is a half. Consequently, the entries of the local stiffness
matrix are therefore given by

AK
ij =

κ

2
| detBK|(BK

−T ∇̂ϕK̂
j)

T (BK
−T ∇̂ϕK̂

i). (47)

13

Since we have already defined the nodal basis, the gradients in this expression can be
computed ahead of time and are given by

∇̂ϕK̂
1 =

(
−1

−1

)
, ∇̂ϕK̂

2 =

(
1

0

)
, and ∇̂ϕK̂

3 =

(
0

1

)
. (48)

Then it is simply a question of tabulating the entries of the local stiffness matrix. We
can exploit the symmetry of (47) while doing this.

8.2.2 Assembly of Local Mass Matrix

The entries of the local mass matrix are given by

MK
ij =

∫
K

ϕK
j ϕ

K
i dx, (49)

which when mapped to the reference finite element by a similar process to that in
Section 8.2.1 gives ∫

K

ϕK
j ϕ

K
i dx =

∫
K̂

ϕK̂
j ϕ

K̂
i | detBK| dx̂. (50)

These are all known quantities that we can explicitly compute ahead of time, see
Appendix A for details, which gives the local mass matrix as

MK =
1

24
| detBK|

2 1 1

1 2 1

1 1 2

 . (51)

8.2.3 Assembly of Local Forcing Vector

The entries of the local forcing vector are given by

FK
i (t) =

∫
K

f(x, y, t)ϕK
i dx, (52)

which when mapped to the reference element by the same process as before gives∫
K

f(x, y, t)ϕK
i dx =

∫
K̂

f(TK(x̂, ŷ), t)ϕ
K̂
i | detBK| dx̂. (53)

The computation of this quantity requires a quadrature method as f is a user-supplied
function so we cannot compute the integral ahead of time. The most basic form of
quadrature would be to take the value of f at the midpoint of the mesh element.
However, to reduce the numerical error introduced, instead, we opt for a fourth-order,
six-point quadrature scheme as shown in [8]. This approximation gives∫

K̂

f(TK(x̂, ŷ), t)ϕ
K̂
i | detBK| dx̂ ≈ | detBK|

6∑
i=1

wif(TK(ξi, ηi), t)ϕ
K̂
i (ξi, ηi), (54)

14

where wi are the quadrature weights and (ξi, ηi) are the quadrature points. The
quadrature weights are given by w1 = w2 = w3 = 0.111690794839005 and w4 =

w5 = w6 = 0.054975871827661. The quadrature points by (ξ1, η1) = (a, a), (ξ2, η2) =
(1− 2a, a), (ξ3, η3) = (a, 1− 2a), (ξ4, η4) = (b, b), (ξ5, η5) = (1− 2b, b), and (ξ6, η6) =

(b, 1− 2b), where a = 0.445948490915965 and b = 0.054975871827661. We note that
there are many possible choices of quadrature method that could be used here, many
with better error convergence. However, given the low order of the finite elements
used, this scheme was deemed appropriate. We refer the interested reader to [6] for
details of other methods.

8.2.4 Assembly of Global Mass Matrix, Stiffness Matrix and Forcing Vec-
tor

Now that we can compute the local mass matrix, stiffness matrix and forcing vector,
we need to combine their contributions to get the equivalent global objects. This
is performed by iterating through each mesh element K in the mesh Th, computing
the local mass and stiffness matrices and local forcing vector, and using the local-to-
global map to add these local contributions to their respective global matrices. This
is detailed in Algorithm 9.1.2 in [12].

9 Numerical Results

In this section, we show numerical results that verify that the scheme presented works
as intended. Figure 3 shows an example solution to a homogeneous problem with
Gaussian initial conditions solved using the scheme. Here we observe qualitatively
the correct behaviour as the initial Gaussian profile is smoothed out. However, this
gives no indication of the error in the approximation of the solution.

9.1 Manufactured Solution

To compute the error committed by the scheme, we need analytical solutions to (1) to
compare the solution against. An easy way of generating analytical solutions is using
the method of manufactured solutions. In this process, we guess a solution form and
then choose the forcing term accordingly so that the solution satisfies the diffusion
equation with homogeneous Dirichlet boundary conditions. Table 1 in Appendix C
shows the computed solutions using this method for both a unit square, right angle
triangle, and irregular pentagon domain. Examples of these domains are shown in

15

−2 −1 0 1 2x −2
−1

0
1

2

y

0.00
0.25
0.50
0.75
1.00

u

t = 0

−2 −1 0 1 2x −2
−1

0
1

2

y

0.00
0.25
0.50
0.75
1.00

u

t = 0.2

−2 −1 0 1 2x −2
−1

0
1

2

y

0.00
0.25
0.50
0.75
1.00

u

t = 0.4

Figure 3: Evolution of the solution to the diffusion equation on the domain Ω =

[−2, 2]2, with homogeneous Neumann boundary conditions, f ≡ 0, and initial condi-
tion u0(x, y) = exp (−(x2 + y2)).

Figure 1, Figure 6, and Figure 7 respectively. SymPy [16] was used to symbolically
compute the required forcing term.

9.2 Convergence Results

To compare the convergence of the numerical results against Theorem 18 we need to
compute the error in the ∥·∥ℓ2([0,T],H1(Ω)) norm. This involves computing the H1 norm
at each timestep and then taking the ℓ2 norm of the resulting values. The H1 norm
is defined by

∥·∥H1(Ω) =

(∫
Ω

| · |2 dx+

∫
Ω

|∇ · |2 dx
) 1

2

. (55)

To compute the integral terms we use the same quadrature scheme defined in Sec-
tion 8.2.3 as this is a higher-order quadrature scheme than the order of the finite
elements used so does not pollute the convergence results.

To measure the convergence of the scheme, we decrease h, the maximum edge
length in the mesh, and then compute the error in the solution when compared
against the manufactured solution. We also set ∆t = h as without this it is difficult
to observe the expected error convergence. This is because, if either h or ∆t is kept
fixed while the other is refined, the dominant term in the error expression changes,
obscuring the expected convergence result. The convergence results for the scheme are
shown in Figure 4. As predicted by Theorem 18, we observe linear convergence for the
three different domains. This also provides a degree of confidence that the scheme is
implemented correctly as we would not expect to see the correct rate of convergence if

16

10−0.510−110−1.5

h

10−3

10−2

‖u
t−

u h
t‖
`2

([
0,

T
],

H
1 (

Ω
))

Square Domain
Triangle Domain
Pentagon Domain
O(h)

Figure 4: Error of the scheme in the ℓ2([0, T], H1(Ω)) compared against the manufac-
tured solutions in Table 1 with ∆t = h.

the scheme was implemented incorrectly. In Figure 5, we report the error with respect
to the computation time. This includes the time required to assemble the mass and
stiffness matrix and the forcing vector and solve the resulting linear system at each
timestep but not to generate the meshes or compute the error. These timings were
performed on an unburdened system equipped with an 11th Gen Intel(R) Core(TM)
i7-11800H and 16 GB of memory.

10 Discussion

In this report, we have only considered the possibility of first-order Lagrange finite
elements. These are the simplest finite elements to implement, however, as seen in
Theorem 18, this limits the scheme to linear convergence. This would be problematic
if a highly accurate solution was required as it would require the mesh resolution to
be prohibitively small. For example, Figure 5 shows that the computation time for
a modest error of 10−3 is approximately 100 seconds, which would only be worse for
a larger mesh, as might be required in an engineering application. Using a quadratic
Lagrange element would allow for up to second-order convergence in space and higher-

17

10−1 100 101 102

Computation time (s)

10−3

10−2

‖u
t−

u h
t‖
`2

([
0,

T
],

H
1 (

Ω
))

Square Domain
Triangle Domain
Pentagon Domain

Figure 5: Computation time required to achieve a given error in the ℓ2([0, T], H1(Ω))

norm with ∆t = h.

order elements would allow for even faster convergence thus permitting a coarser mesh
to be used. However, when high accuracy is not required first order elements may
still be a good choice as they are computationally cheaper to compute with.

In the scheme presented, the time derivative was discretised using an implicit Eu-
ler scheme, chosen due to its simplicity. It was chosen over an explicit Euler scheme
as it is unconditionally stable, as shown in Theorem 17, whereas the timestep for the
explicit Euler scheme must be chosen to satisfy a Courant–Friedrichs–Lewy (CFL)
condition. Like the spatial discretisation, the implicit Euler scheme is first-order so a
high-accuracy solution may require a prohibitively small timestep. One of the great
advantages of the method of lines discretisation described in Section 6 is that the
resulting system of ODEs can be solved with most numerical methods for differential
equations. For example, a second-order backward difference could be used instead to
achieve second-order convergence in time. To further improve the efficiency in calcu-
lating the solution an adaptive timestep could also be employed. This would allow
the scheme to take small steps to preserve accuracy when the solution is changing
rapidly and take large steps to speed up computation when the solution is changing
slowly. Since these schemes are far more sophisticated it would make sense to use

18

an ‘off-the-shelf’ implementation such as those provided in PETSc [1] or SUNDIALS
[14].

A further extension to the problem presented here would consider the forcing
function f to be a nonlinear function of the solution u (a reaction-diffusion equation).
Equations of this type are highly relevant in mathematical biology where they form
the basis of the theory of pattern formation [20]. Due to the nonlinear nature of
these equations, this would require modification to the scheme presented here. The
first possible extension would be to use the Newton-Kantorovich method to invert the
nonlinear system of equations at each timestep [12]. The second possible extension
would be to treat the spatial discretisation implicitly but the nonlinear terms explic-
itly. This avoids the timestep restrictions that a CFL condition would introduce and
also avoids the extra computation required to invert a nonlinear system of equations.
This is called an implicit-explicit (IMEX) scheme.

11 Conclusion

In this report, we have shown the well-posedness of a Galerkin approximation to
the heat equation. Then we presented a finite element scheme based on first-order
Lagrange elements and the implicit Euler scheme for solving the problem numeri-
cally. Finally, we present numerical experiments that show agreement between the
theoretical and achieved convergence rates.

References

[1] Satish Balay et al. “Efficient Management of Parallelism in Object Oriented Nu-
merical Software Libraries”. In: Modern Software Tools in Scientific Computing.
Ed. by E. Arge, A. M. Bruaset, and H. P. Langtangen. Birkhäuser Press, 1997,
pp. 163–202.

[2] Igor A. Baratta et al. DOLFINx: the next generation FEniCS problem solving
environment. preprint. 2023. doi: 10.5281/zenodo.10447666.

[3] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite
Element Methods. Springer New York, 2008. isbn: 9780387759340. doi: 10.
1007/978-0-387-75934-0.

19

https://doi.org/10.5281/zenodo.10447666
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1007/978-0-387-75934-0

[4] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equa-
tions. Springer New York, 2011. isbn: 9780387709147. doi: 10.1007/978-0-
387-70914-7.

[5] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. Society
for Industrial and Applied Mathematics, Jan. 2002. isbn: 9780898719208. doi:
10.1137/1.9780898719208.

[6] Ronald Cools. “An encyclopaedia of cubature formulas”. In: Journal of Com-
plexity 19.3 (June 2003), pp. 445–453. issn: 0885-064X. doi: 10.1016/s0885-
064x(03)00011-6.

[7] Timothy A. Davis. “Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern
multifrontal method”. In: ACM Trans. Math. Softw. 30.2 (June 2004), pp. 196–
199. issn: 0098-3500. doi: 10.1145/992200.992206.

[8] Gouri Dhatt, Gilbert Touzot, and Emmanuel Lefrançois. Finite Element Method.
Wiley, Oct. 2012. isbn: 9781118569764. doi: 10.1002/9781118569764.

[9] Alexandre Ern and Jean-Luc Guermond. Finite Elements III: First-Order and
Time-Dependent PDEs. Springer International Publishing, 2021. isbn: 9783030573485.
doi: 10.1007/978-3-030-57348-5.

[10] Alexandre Ern and Jean-Luc Guermond. Theory and Practice of Finite Ele-
ments. Springer New York, 2004. isbn: 9781475743555. doi: 10.1007/978-1-
4757-4355-5.

[11] Lawrence Evans. Partial Differential Equations. American Mathematical Soci-
ety, Mar. 2010. isbn: 9781470411442. doi: 10.1090/gsm/019.

[12] Patrick E. Farrell. C6.4 Finite Element Methods for PDEs Course Notes. Math-
ematical Institute, University of Oxford, Hilary Term 2022.

[13] David A. Ham et al. Firedrake User Manual. First edition. Imperial College
London et al. May 2023. doi: 10.25561/104839.

[14] Alan C. Hindmarsh et al. “SUNDIALS: Suite of nonlinear and differential/alge-
braic equation solvers”. In: ACM Transactions on Mathematical Software 31.3
(Sept. 2005), pp. 363–396. issn: 1557-7295. doi: 10.1145/1089014.1089020.

[15] Andreas Kloeckner et al. MeshPy. Version 2022.1.1. Nov. 2022. doi: 10.5281/
zenodo.7296572.

20

https://doi.org/10.1007/978-0-387-70914-7
https://doi.org/10.1007/978-0-387-70914-7
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1016/s0885-064x(03)00011-6
https://doi.org/10.1016/s0885-064x(03)00011-6
https://doi.org/10.1145/992200.992206
https://doi.org/10.1002/9781118569764
https://doi.org/10.1007/978-3-030-57348-5
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1090/gsm/019
https://doi.org/10.25561/104839
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.5281/zenodo.7296572
https://doi.org/10.5281/zenodo.7296572

[16] Aaron Meurer et al. “SymPy: symbolic computing in Python”. In: PeerJ Com-
puter Science 3 (Jan. 2017), e103. issn: 2376-5992. doi: 10.7717/peerj-

cs.103.

[17] Jonathan Richard Shewchuk. “Triangle: Engineering a 2D quality mesh genera-
tor and Delaunay triangulator”. In: Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 1996, pp. 203–222. isbn: 9783540706809. doi: 10.1007/

bfb0014497.

[18] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer New
York, 2002. isbn: 9780387217383. doi: 10.1007/978-0-387-21738-3.

[19] Endre Süli. Lecture Notes on Finite Element Methods for Partial Differential
Equations. Mathematical Institute, University of Oxford, Aug. 2020.

[20] A.M. Turing. “The Chemical Basis of Morphogenesis”. In: Philosophical Trans-
actions of the Royal Society of London. Series B, Biological Sciences 237.641
(Aug. 1952), pp. 37–72. doi: 10.1098/rstb.1952.0012.

[21] Pauli Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific computing
in Python”. In: Nature Methods 17.3 (Feb. 2020), pp. 261–272. issn: 1548-7105.
doi: 10.1038/s41592-019-0686-2.

21

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/bfb0014497
https://doi.org/10.1007/bfb0014497
https://doi.org/10.1007/978-0-387-21738-3
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1038/s41592-019-0686-2

Appendices

A Computation of the Entries of the Local Mass Ma-

trix

Here we compute the entries of the local stiffness matrix (whilst exploiting its sym-
metry):

MK
11 = | detBK|

∫
K̂

(1− x̂− ŷ)2 dx̂ =
1

12
| detBK|, (56)

MK
12 = MK

21 = | detBK|
∫
K̂

(1− x̂− ŷ)x̂ dx̂ =
1

24
| detBK|, (57)

MK
13 = MK

31 = | detBK|
∫
K̂

(1− x̂− ŷ)ŷ dx̂ =
1

24
| detBK|, (58)

MK
22 = | detBK|

∫
K̂

x̂2 dx̂ =
1

12
| detBK|, (59)

MK
23 = MK

32 = | detBK|
∫
K̂

x̂ŷ dx̂ =
1

24
| detBK|, (60)

MK
33 = | detBK|

∫
K̂

ŷ2 dx̂ =
1

12
| detBK|. (61)

(62)

B Additional Example Meshes

0.0 0.5 1.0
x

0.00

0.25

0.50

0.75

1.00

y

Figure 6: Example mesh for the right an-
gle triangle domain.

0 1
x

0.0

0.5

1.0

1.5

y

Figure 7: Example mesh for the irregular
pentagon domain.

22

C Manufactured Solutions

Domain Analytical Solution u(x, y, t) Forcing Term f(x, y, t)

Unit square xy (x− 1) (y − 1) et
(−2κ(x(x− 1) + y(y − 1))

+ xy(x− 1)(y − 1))et

Right angle
triangle

xy (−x− y + 1) et (−xy (x+ y − 1) + 2x+ 2y) et

Irregular
Pentagon
Domain

xy(x− 1)(−x+ y − 1)(x+ y − 2)et

(−2κ(3x(x− 1)(y − 1)

− y(x(x− 1) + x(x− y + 1)

+ x(x+ y − 2)

+ (x− 1)(x− y + 1)

+ (x− 1)(x+ y − 2)

+ (x− y + 1)(x+ y − 2)))

− xy(x− 1)(x− y + 1)(x+ y − 2))et

Table 1: Analytical solution for different domains generated using the method of
manufactured solutions.

D Python Implementation

1 from typing import Optional
2

3 import numpy as np
4 import s c ipy
5 from meshpy . t e t import MeshInfo
6 from tqdm import tqdm
7

8

9 de f calc_transform_mat (v e r t i c e s : np . ndarray) −> np . ndarray :
10 """ Ca lcu la te the a f f i n e t rans fo rmat ion matrix from the r e f e r e n c e

element to
11 the element .
12

13 Parameters
14 −−−−−−−−−−
15 v e r t i c e s : np . ndarray
16 The v e r t i c e s o f the element
17

23

18 Returns
19 −−−−−−−
20 np . ndarray
21 Af f i n e t rans fo rmat ion matrix
22 """
23 B_k = np . array (
24 [
25 v e r t i c e s [1 , :] − v e r t i c e s [0 , :] ,
26 v e r t i c e s [2 , :] − v e r t i c e s [0 , :] ,
27]
28) .T
29 re turn B_k
30

31

32 de f l o c a l_s t i f f n e s s_mat r i x (v e r t i c e s : np . ndarray) −> np . ndarray :
33 """Assemble the l o c a l s t i f f n e s s matrix o f a 2d CG1 element .
34

35 Parameters
36 −−−−−−−−−−
37 v e r t i c e s : np . ndarray
38 Coordinates o f the nodes o f the element .
39

40 Returns
41 −−−−−−−
42 np . ndarray
43 l o c a l s t i f f n e s s matrix o f the element .
44 """
45 B_k = calc_transform_mat (v e r t i c e s)
46 grads = np . array ([[−1 , 1 , 0] , [−1 , 0 , 1]])
47 area = 0 .5 ∗ np . l i n a l g . det (B_k)
48 S = np . empty ((3 , 3))
49 f o r i in range (3) :
50 f o r j in range (3) :
51 S [i , j] = np . l i n a l g . s o l v e (
52 B_k.T, grads [: , j]
53) .T @ np . l i n a l g . s o l v e (B_k.T, grads [: , i])
54 re turn area ∗ S
55

56

57 de f local_mass_matrix (v e r t i c e s : np . ndarray) −> np . ndarray :
58 """Assemble the l o c a l mass matrix o f a 2d CG1 element .
59

60 Parameters

24

61 −−−−−−−−−−
62 v e r t i c e s : np . ndarray
63 Coordinates o f the nodes o f the element .
64

65 Returns
66 −−−−−−−
67 np . ndarray
68 l o c a l mass matrix o f the element .
69 """
70 tmp = sc ipy . l i n a l g . t o e p l i t z ([2 , 1 , 1])
71 B_k = calc_transform_mat (v e r t i c e s)
72 re turn np . l i n a l g . det (B_k) ∗ tmp / 24
73

74

75 de f l o ca l_fo rc ing_vec to r (
76 f : c a l l a b l e , v e r t i c e s : np . ndarray , t : f l o a t
77) −> np . ndarray :
78 """Compute the l o c a l f o r c i n g vec to r f o r an element us ing three
79 po int quadrature .
80

81 Parameters
82 −−−−−−−−−−
83 f : c a l l a b l e
84 f o r c i n g func t i on
85 v e r t i c e s : np . ndarray
86 v e r t i c e s o f the element
87 t : f l o a t
88 cur rent time
89

90 Returns
91 −−−−−−−
92 np . ndarray
93 l o c a l f o r c i n g vec to r
94 """
95 bas is_func = (
96 lambda x , y : 1 − x − y ,
97 lambda x , y : x ,
98 lambda x , y : y ,
99)

100 # constant s f o r d e f i n i n g quad po in t s
101 a = 0.445948490915965
102 b = 0.091576213509771
103 # quadrature po in t s

25

104 quad_points = np . array (
105 [
106 [a , a] ,
107 [1 − 2 ∗ a , a] ,
108 [a , 1 − 2 ∗ a] ,
109 [b , b] ,
110 [1 − 2 ∗ b , b] ,
111 [b , 1 − 2 ∗ b] ,
112]
113)
114 # quadrature weights
115 weights = np . array (
116 [
117 0.111690794839005 ,
118 0.111690794839005 ,
119 0.111690794839005 ,
120 0.054975871827661 ,
121 0.054975871827661 ,
122 0.054975871827661 ,
123]
124)
125 B_k = calc_transform_mat (v e r t i c e s)
126 c = v e r t i c e s [0 , :]
127 b = np . empty (3)
128 f o r j in range (3) :
129 tmp = 0
130 f o r i , w in enumerate (weights) :
131 # map r e f e r e n c e coords to r e a l l y coo rd ina t e s
132 eval_point = B_k @ quad_points [i , :] + c
133 tmp += f (∗ eval_point , t) ∗ bas is_func [j] (∗ eval_point) ∗ w
134 b [j] = tmp
135 re turn np . l i n a l g . det (calc_transform_mat (v e r t i c e s)) ∗ b
136

137

138 de f solve_heat_eq (
139 mesh : MeshInfo ,
140 f : c a l l a b l e ,
141 T: f l o a t ,
142 dt : f l o a t ,
143 u0 : c a l l a b l e ,
144 kappa : Optional [f l o a t] = 1 ,
145) :
146 """ So lve s the equat ion heat equat ion us ing CG1 f i n i t e e lements .

26

147

148 More s p e c i f i c a l l y s o l v e s :
149 u_t = div grad u + f (x , t) on omega ∗(0 ,T)
150 u = 0 on gamma
151

152 Parameters
153 −−−−−−−−−−
154 mesh : MeshInfo
155 ‘meshpy ‘ mesh ob j e c t to s o l v e the problem on .
156 f : c a l l a b l e
157 Forcing func t i on . Must have the s i gna tu r e ‘ ‘ f (x , y , t) ‘ ‘ .
158 T : f l o a t
159 Fina l time to s o l v e to .
160 dt : f l o a t
161 Time step .
162 u0 : c a l l a b l e
163 I n i t i a l c ond i t i on s . Must have s i gna tu r e ‘ ‘ u0 (x , y) ‘ ‘ .
164 kappa : f l o a t , op t i ona l
165 Co e f f i c i e n t o f d i f f u s i v i t y , by d e f au l t 1
166 """
167 # i n i t i a l i s a t i o n
168 # coord ina t e s o f a l l the nodes
169 nodes = np . asar ray (mesh . po in t s)
170 # number o f time s t ep s
171 N = in t (T // dt)
172 # number o f nodes
173 n_nodes = nodes . shape [0]
174 # node id o f a l l nodes on the boundary
175 # as we have D i r i c h l e t BCs we do not need to s o l v e f o r these
176 boundary_nodes = np . unique (mesh . f a c e t s)
177 # mask f o r ex t r a c t i n g the f r e e nodes
178 f ree_nodes = np . d e l e t e (np . arange (n_nodes) , boundary_nodes)
179 # node i d s that comprise each element
180 e lements = np . asar ray (mesh . e lements)
181 # so l u t i o n array
182 U = np . z e ro s ((N + 1 , n_nodes))
183 # s t i f f n e s s matrix
184 A = sc ipy . spar s e . dok_array ((n_nodes , n_nodes))
185 # mass matrix
186 B = sc ipy . spar s e . dok_array ((n_nodes , n_nodes))
187

188 # i n i t i a l c ond i t i on s
189 U[0 , :] = u0 (nodes [: , 0] , nodes [: , 1])

27

190

191 # assemble s t i f f n e s s matrix and mass matrix
192 f o r element in e lements :
193 A[element [: , np . newaxis] , e lement] += lo ca l_s t i f f n e s s_mat r i x (
194 nodes [element]
195)
196 B[element [: , np . newaxis] , e lement] += local_mass_matrix (
197 nodes [element]
198)
199

200 # convert to CSC format f o r b e t t e r performance
201 A = A. toc s c ()
202 B = B. toc s c ()
203

204 f o r n in tqdm(range (1 , N + 1)) :
205 b = np . z e ro s (n_nodes)
206

207 # rhs f o r c i n g
208 f o r element in e lements :
209 b [element] += dt ∗ loca l_fo r c ing_vec to r (
210 f , nodes [element] , n ∗ dt
211)
212

213 # prev ious s o l u t i o n
214 b += B @ U[n − 1 , :]
215

216 l h s = (
217 B[free_nodes [: , np . newaxis] , f ree_nodes]
218 + dt ∗ kappa ∗ A[free_nodes [: , np . newaxis] , f ree_nodes]
219)
220

221 U[n , free_nodes] = sc ipy . spar s e . l i n a l g . sp so l v e (
222 lhs , b [free_nodes] , use_umfpack=True
223)
224

225 re turn U, nodes , dt ∗ np . arange (N + 1) , A, B

28

	Introduction
	Problem Statement
	Mathematical Background
	Semi-Discretised Variational Form
	Well-Posedness of the Semi-Discretised Variational Form
	Galerkin Approximation
	Approximation in Time
	Stability of the Implicit Euler Scheme
	Convergence of the Implicit Euler Scheme

	Implementation
	Meshing and a Basis for Vh
	Assembly Process
	Assembly of Local Stiffness Matrix
	Assembly of Local Mass Matrix
	Assembly of Local Forcing Vector
	Assembly of Global Mass Matrix, Stiffness Matrix and Forcing Vector

	Numerical Results
	Manufactured Solution
	Convergence Results

	Discussion
	Conclusion
	Computation of the Entries of the Local Mass Matrix
	Additional Example Meshes
	Manufactured Solutions
	Python Implementation

