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Abstract

In this report, we study Turing instabilities in an abstract trimolecular re-

action called the Brusselator. A system of reaction-diffusion partial differential

equations (PDEs) modelling this chemical reaction is derived. The conditions

for a Turing instability are derived using linear stability analysis. Following

[14], a Lagrangian transformation is used to allow the system to be studied on

a domain that is uniformly and isotropically deformed in time. To verify the

validity of the linear stability analysis and understand the system’s dynamic

on a deforming domain, we present a numerical scheme for solving reaction-

diffusion systems. Finally, using this scheme, we present numerical results

for the Brusselator on a fixed, growing, and, rarely studied, contracting one-

dimensional domain. These results show the presence of pattern formation on a

fixed domain. For growing domains, we find that the pattern undergoes period

doubling via peak splitting, as reported by [4], whereas on a contracting domain

the period halving occurs by the peaks terminating rather than recombining.

1 Introduction

Turing’s 1952 seminal paper “The chemical basis of morphogenesis” [25] showed that

it was possible for simple reaction-diffusion equations to undergo a so-called Turing

instability leading to the formation of spatially heterogeneous patterns. This result

showed that a spatially homogeneous equilibrium that is stable in the absence of

diffusion can be driven to instability with the addition of diffusion. This is a surprising

result as diffusion is usually considered to be stabilising due to its smoothing nature.

However, in the case of a Turing instability the interaction between the diffusion and

reaction terms leads to complex dynamics, which has led to a wide range of research

into reaction-diffusion equations.

The motivation for Turing’s work came from the study of morphogenesis, which

is the process by which cells differentiate from each other. This involves chemical

morphogens which react together and diffuse through tissue, affecting the morpho-

genesis process. Turing showed that a system containing two morphogens could emit

spatially heterogeneous patterns in the concentration of the morphogens and hypoth-

esised these patterns might explain spatial organisation in embryos. Subsequently,

these ideas have also been applied to a wide range of areas such as the patterning

of teeth in alligators [12], stripe formation in juvenile Pomacanthus [20], and mu-

tant mouse limbs [16]. However, Turing’s work is not without its criticism as no
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real morphogens have been found [8] and because the resulting patterns formed lack

robustness to changes in the initial conditions [4]. Despite this, there have been

multiple chemical reactions that have experimentally exhibited the pattern formation

predicted by Turing’s theory [19, 13].

Turing’s original work considered a fixed domain, however, during biological pro-

cesses such as embryonic development this may no longer be a good assumption.

Crampin et al. [4] investigate the effect of slow isotropic growth in one dimension

and suggest that domain growth could be a mechanism for robust pattern formation.

In this report, we reproduce this result and extend it to the case of domain contrac-

tion. In their subsequent paper [5], Crampin et al. investigate non-uniform domain

growth and show this leads to patterns not seen during uniform domain growth,

however, this is beyond the scope of this report.

2 The Brusselator

Prigogine and Nicolis conceived the Brusselator system [21] in 1985 as an abstract

trimolecular reaction which can exhibit chemical oscillations. It describes a reaction

which turns two initial substances, A and B, into two products, D and E, via two

intermediary substances X and Y . The four stages of the reaction are given by

A
k1−→ X, (1)

2X + Y
k2−→ 3X, (2)

B +X
k3−→ Y +D, (3)

X
k4−→ E, (4)

where k1, k2, k3, and k4 are the rates of reaction for each stage. We assume there is a

sufficiently large quantity of the initial reactants A and B such that their concentra-

tions can be considered positive constants. Applying the law of mass action [17] to

reactions (1)-(4) yields the following system of ordinary differential equations (ODEs)

dX

dt
= k1A+ k2X

2Y − k3BX − k4X, (5)

dY

dt
= −k2X

2Y + k3BX, (6)

dD

dt
= k3BX, (7)

dE

dt
= k4X, (8)
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where each variable denotes the concentration of the corresponding chemical. Here

we note that (7) and (8) are decoupled from the rest of the system and subsequently

will be omitted from further analysis.

Next, we seek to non-dimensonalise equations (5) and (6) by introducing the

following dimensionless variables

u =

√
k2
k4

X, v =

√
k2
k4

Y, and t̃ = k4t. (9)

We also introduce the following dimensionless parameter groupings

a =
Ak1

k4

√
k4
k2

, and b =
Bk3
k4

. (10)

Substituting these into (5) and (6) gives

du

dt̃
= a− (b+ 1)u+ u2v, (11)

dv

dt̃
= bu− u2v. (12)

This is similar to the commonly studied Schnakenberg model [23]. Note, from here

onwards, for notational convenience, we drop t̃ and let t denote the dimensionless

time. Finally, we relax the assumption that the chemicals are well mixed and apply

Fick’s second law of diffusion [24] to get

∂u

∂t
= ∇2u+ a− (b+ 1)u+ u2v = ∇2u+ f(u, v), (13)

∂v

∂t
= D∇2v + bu− u2v = D∇2v + g(u, v), (14)

where D is a dimensionless coefficient that captures the ratio of diffusivity of B

compared to the diffusivity of A. This takes the standard form of a reaction-diffusion

equation given by (15).

3 Conditions for Pattern Formation

In this section, we will derive the necessary conditions for a Turing instability to occur

in a reaction-diffusion system of two chemicals. The reaction and diffusion of these

two chemical concentrations u(x, t) and v(x, t) is modelled by the coupled PDEs

∂u

∂t
= D∇2u+R(u), x ∈ Ω, t > 0, (15)

3



where Ω is an open, bounded, and connected domain and

u =

(
u(x, t)

v(x, t)

)
, D =

(
Du 0

0 Dv

)
, and R(u) =

(
f(u)

g(u)

)
,

with specified initial conditions u(x, 0). We will assume homogeneous Neumann

boundary conditions n · ∇u = 0 on ∂Ω, where n is the outwards facing unit nor-

mal to the boundary of the domain ∂Ω. This is a natural choice as it implies there

is no external input to the system and hence any pattern formation is caused by

phenomena inherent to the system itself rather than a flux-driven instability.

Definition 1 (Turing Instability). A reaction-diffusion system exhibits a Turing in-

stability if, for the well-mixed case (in the absence of diffusion), there is a spatially

homogeneous, asymptotically stable steady state which becomes unstable in the pres-

ence of diffusion [17].

3.1 Well Mixed Stability

We proceed in a similar fashion to Murray [17] and first look for conditions for which

the well-mixed system (Du = Dv = 0) has an asymptotically stable homogeneous

steady state u∗. That is f(u∗) = g(u∗) = 0. We then proceed to linearise about the

steady state by considering the perturbed steady state u = u∗ + ξ, where ∥ξ∥ ≪ 1.

Hence by Taylor expansion of (15) about the steady state and neglecting higher order

terms, we have

∂ξ

∂t
=

(
fu fv

gu gv

)∣∣∣∣∣
u∗

ξ = Jξ, (16)

where J is the Jacobian matrix evaluated at u∗. The solution of (16), assuming J is

semi-simple, is given by ξ(x, t) = ξ(x, 0) exp(Jt) = ξ(x, 0)V diag(exp(λ1t), exp(λ2t))V
−1

whereV is the matrix of eigenvectors and λi the eigenvalues of J. Thus, for the steady

state ξ = 0 of the linearised system (16) to be asymptotically stable, we require

ℜ(λi) < 0 for i = 1, 2. If this is satisfied, by the Hartman–Grobman theorem [9], the

non-linear system without diffusion is also asymptotically stable in a neighbourhood

of the equilibrium u∗. The eigenvalues of J are given by

λ1,2 =
1

2

(
Tr(J)±

√
(Tr(J))2 − 4 det(J)

)
, (17)

and hence asymptotic stability in the absence of diffusion is guaranteed if both of the

following conditions hold:

Condition 1. Tr(J) = fu + gv < 0,

Condition 2. det(J) = fugv − fvgu > 0.
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3.2 Instability in the Presence of Diffusion

Performing the same Taylor expansion as previous, this time in the presence of diffu-

sion, leads to the full linearised system

∂ξ

∂t
= D∇2ξ + Jξ. (18)

We then assume a separable solution ansatz given by ξ(x, t) = T (t)w(x). Substituting

this into (18) and rearranging it into a separated form gives

dT

dt

1

T
w = D∇2w + Jw. (19)

We note that the terms in T are independent of space and the right-hand side is

independent of time. Hence, we have

dT

dt
= λT, (20)

where λ is the eigenvalue of the system in the presence of diffusion. Thus T =

T0 exp(λt) for some non-zero constant T0. The temporal growth or decay and conse-

quently the stability of the solution is therefore determined by λ. We also have the

following equation for w

D∇2w + Jw = λw, (21)

with homogeneous Neumann boundary conditions n · ∇u = 0 on ∂Ω as before. On

an open, bounded, and connected domain, the Laplace operator has discrete non-

negative eigenvalues [7]. Hence, we assume an eigenfunction expansion of w such

that

w(x) =
∑
k

ckwk(x). (22)

On rectangle-like cartesian product domains with Neumann boundary conditions, we

can assume a separable solution for wk(x) which yields cosine terms [7]. From this,

the following relation holds ∇2w = −k2w, where k is the wavenumber. Thus, (21)

can be rewritten as [
λI− J+Dk2

]
w = 0. (23)

For non-trivial solutions of w to exist, we must have

det(λI− J+Dk2) = 0, (24)

or equivalently

λ2 + λ
[
k2 (Du +Dv)− (fu + gv)

]
+ h(k2) = 0, (25)
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h(k2) = DuDvk
4 − (Dvfu +Dugv) k

2 + det(J). (26)

For instability in the presence of diffusion we require that, for at least one of the

eigenvalues, ℜ(λ (k2)) > 0. From condition 1 we require fu+gv < 0 and as Du, Dv > 0

the coefficient of λ in (25) must be positive. Consequently, to satisfy ℜ(λ(k2)) > 0,

we require that h(k2) < 0. Condition 2 dictates that det(J) > 0 and as Du, Dv > 0,

a necessary condition for h(k2) < 0 is

Condition 3. Dvfu +Dugv > 0.

A corollary to condition 1 and condition 3 is that for these two conditions to hold

simultaneously we must have Du ̸= Dv and also sign(fu) ̸= sign(gv). To derive a

sufficient condition for ℜ(λ(k2)) > 0 we solve dh/d(k2) = 0 which gives the minimiser

(k∗)2 =
Dvfu +Dugv

2DuDv

, (27)

at which we have

h
(
(k∗)2

)
= det(J)− (Dvfu +Dugv)

2

4DuDv

. (28)

As we require h(k2) < 0, this provides the final condition for a Turing instability to

occur:

Condition 4. det(J) < (Dvfu+Dugv)
2

4DuDv
.

3.3 Minimum Domain Size

The wavenumber k in the expansion (22) takes discrete values and therefore, whilst

there might exist an interval of values of k such that h(k2) < 0, the discrete values of

k may not coincide with this interval. In this case, whilst the conditions for a Turing

instability may be satisfied, there is no pattern formation.

In the 1D domain Ω = (0, L), the wavenumber is given by k = nπ/L where n =

0, 1, 2, . . . where n is the mode of the system. From (26) we know that to achieve

h(k2) < 0 we must have

k2 ∈

Dvfu +Dugv −
√
(Dvfu +Dugv)

2 − 4DuDv det(J)

2DuDv

,

Dvfu +Dugv +
√
(Dvfu +Dugv)

2 − 4DuDv det(J)

2DuDv

 . (29)
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Hence, we require L to be sufficiently large such that (29) holds for at least one

non-zero value of n, giving an unstable wavenumber. This also reveals that as the

domain size increases the pattern admitted becomes more complicated as the number

of admissible unstable wavenumbers increases [15]. Whilst the linear stability analysis

performed here would suggest that the modes associated with the admissible unstable

wavenumbers would grow exponentially, in reality, the non-linearity we have ignored

bounds their growth. This is shown by the numerical results in section 6.

3.4 Analysis of the Brusselator

In this section, we will apply the derived conditions 1–4 in a similar fashion to [2] in

order to show that the Brusselator system is capable of undergoing a Turing insta-

bility. The homogeneous steady state of (13) and (14) is given by u∗ = (a, b/a), as

shown in fig. 1a. The Jacobian evaluated at u∗ is given by

J =

(
b− 1 a2

−b −a2

)
. (30)

Hence, from conditions 1–4 we have

b− 1− a2 < 0, (31)

a2b− a2(b− 1) = a2 > 0, (32)

D(b− 1)− a2 > 0, (33)(
D(b− 1)− a2

)2 − 4Da2 > 0. (34)

We note that (32) is trivially satisfied for all non-zero parameter values so the stability

of the well-mixed steady state is entirely determined by (31). From (31), when b−1 =

a2 the system undergoes a Hopf bifurcation meaning the stable equilibrium needed for

a Turing instability becomes a limit cycle, as shown in fig. 1b, and a Turing instability

is no longer possible. For both (1) and (3) to simultaneously be true we must have

D > 1. The final condition (34) gives a inequality that is quadratic in b

D2b2 − 2D
(
D + a2

)
b+D2 − 2Da2 + a4 > 0. (35)

This is satisfied if either of the following inequalities hold

b <
D + a2 − 2a

√
D

D
, (36)

b >
D + a2 + 2a

√
D

D
. (37)
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(a) Parameters (a, b) = (2, 3), which shows

a stable equilibrium at u∗ = (1, 1.5) as pre-

dicted by (31).
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(b) Parameters (a, b) = (1, 3), which shows

the existence of a stable limit cycle created

by a Hopf bifurcation.

Figure 1: Phase portraits of the well-mixed Brusselator system.

The first inequality (36) contradicts (33) meaning they cannot simultaneously hold.

If the second inequality (37) holds then (33) also holds, hence making (33) redundant.

The two inequalities, (31) and (37), thereby define two bounding curves in the (a, b)

parameter space that determines the so-called Turing space [18], as shown in fig. 2.

From this, we note that as D → ∞, the range of parameters for which a Turing

instability is possible increases.

We can calculate the allowable wave numbers for a given length domain for the

Brusselator system by applying (29), giving the allowable wave numbers as

k2 ∈

D (b− 1)− a2 −
√

(D (b− 1)− a2)2 − 4Da2

2D
,

D (b− 1)− a2 +
√

(D (b− 1)− a2)2 − 4Da2

2D

 . (38)

The linear stability analysis can be applied to predict what might be the dominant

wave number in the system. The mode n associated with the most positive ℜ(λ(k2))

grows the fastest and therefore is most likely to be dominant when the system enters

the non-linear regime. The allowable and expected dominant wave modes for the

parameter values (D, a, b) = (20, 2, 3) as L increases are shown in fig. 3. As expected,
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Figure 2: The Turing space for the Brusselator with varying values of D. The shaded

area denotes where conditions 1–4 are satisfied. The red point denotes the parameter

values (a, b) = (2, 3), which are used in the forthcoming numerical simulations. This

shows these are suitable parameter values to use for a Turing instability to occur.

increasing L leads to more admissible wave modes.

4 Pattern Formation on Changing Domains

In this section, we seek to extend (15) to allow for the possibility that the domain

changes in time. A general two chemical reaction-diffusion equation on a changing

one-dimensional domain takes the form

∂u

∂t
+

∂

∂x
(au) =

∂2u

∂x2
+ f(u, v), (39)

with an equivalent expression of v and where a is the velocity induced by the domain

growth [4]. We then proceed in a similar fashion to Madzvamuse and Maini [14] and

introduce a transformation between the growing domain and the fixed domain. The

new Lagrangian coordinate in the growing domain which changes with time is given

by

x = x̂(ξ, t), (40)

where ξ ∈ [0, 1] is a fixed coordinate that does not change in time. The trans-

formation maps the chemical concentrations to new functions u(x, t) = û(ξ, t) and

v(x, t) = v̂(ξ, t). Then we define the material derivative as

Dû

Dt
≡ ∂u

∂t
+

∂u

∂x

∂x

∂t
≡ ∂u

∂t
+ a

∂u

∂x
, (41)
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Figure 3: The admissible and dominant modes as predicted by the linear stability

analysis for the Brusselator system as the domain length L increases for the parameter

values (D, a, b) = (20, 2, 3).

and, by the chain rule,
∂u

∂x
=

∂û

∂ξ

∂ξ

∂x
. (42)

It follows that the second derivative of u in space is then given by

∂2u

∂x2
=

∂2û

∂ξ2

(
∂ξ

∂x

)2

+
∂û

∂ξ

∂2ξ

∂x2
(43)

The equivalent analysis can also be performed for v. Using (41) and (43) we can

rewrite (39) for both û and v̂ as

Dû

Dt
=

∂2û

∂ξ2

(
∂ξ

∂x

)2

+
∂û

∂ξ

∂2ξ

∂x2
+ f(û, v̂)− ∂2x

∂x∂t
û, (44)

Dv̂

Dt
= D

(
∂2v̂

∂ξ2

(
∂ξ

∂x

)2

+
∂v̂

∂ξ

∂2ξ

∂x2

)
+ g(û, v̂)− ∂2x

∂x∂t
v̂. (45)

For simplicity, we will only consider the case of uniform, isotropic growth. For

non-uniform domain growth, we refer the interested reader to [5]. We let

x̂ = ρ(t)ξ, (46)

where ρ(t) is the growth function which controls how the domain changes in time.

Hence, we have

∂x

∂t
=

dρ

dt
(t)ξ =

x

ρ(t)

dρ

dt
(t) =⇒ ∂2x

∂x∂t
=

1

ρ(t)

dρ

dt
(t), (47)

10



∂x

∂ξ
= ρ(t) =⇒

(
∂ξ

∂x

)2

=
1

(ρ(t))2
, (48)

∂2ξ

∂x2
= 0, (49)

which simplifies (44) and (45) to

Dû

Dt
=

1

(ρ(t))2
∂2û

∂ξ2
+ f(û, v̂)− 1

ρ(t)

dρ

dt
(t)û, (50)

Dv̂

Dt
=

D

(ρ(t))2
∂2v̂

∂ξ2
+ g(û, v̂)− 1

ρ(t)

dρ

dt
(t)v̂. (51)

We note that this transformation eliminates the advective term, which is advantageous

as it simplifies the subsequent numerical scheme. In the case of slow growth dρ/dt is

small so it is possible to omit the final term of both equations (50) and (51). However,

for the numerical examples shown later this does not necessarily hold so the full form

is used.

We consider three possible forms of domain growth, which are: linear growth given

by

ρ(t) = L0(1 + γt), (52)

exponential growth given by

ρ(t) = L0 exp(γt), (53)

and sinusoidal growth/contraction given by

ρ(t) = L0 + γ sin

(
2nπt

T

)
, (54)

where γ is a notional growth rate, L0 is the initial domain size, n is the number of

periods of growth/contraction, and T is the final time. For (52) and (53) the growth

rate γ can be set to be negative for a contracting domain or to a piecewise continuous

function of t for more interesting growth/contraction cases.

5 Numerical Scheme

To verify that the previously derived condition leads to a Turing instability and to

investigate domain growth, we will solve the Brusselator system to a steady state on

a 1D domain numerically. This will verify the presence of heterogeneous patterns in

the full non-linear system, whereas in section 3 we relied on linear stability analysis,

which is only valid in a neighbourhood of the equilibrium. The numerical scheme

requires the problem to be discretised in time and space.
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To solve (15) on the domain {(x, t) ∈ (0, L) × [0, T ]}, where L > 0 is the length

of the domain and T > 0 is the final time, we first spatially discretise the problem

using finite differences following [10]. We define a mesh by letting N,M ∈ Z+ be

the number of steps in the spatial and temporal direction respectively. The spatial

and temporal step-size is then given by ∆x = L/N and ∆t = T/M. We then approxi-

mate the true solution u(xi, tm) by the numerical solution Um
j , where xj = j∆x for

j ∈ {0, 1, . . . , N} and tm = m∆t for m ∈ {0, 1, . . . ,M}. The Laplacian term with ho-

mogeneous Neumann boundary conditions is then approximated by the second-order

central difference operator given by

D+
x D

−
x U

m
j =



2Um
j+1 − 2Um

j

(∆x)2
j = 0,

Um
j+1 − 2Um

j +Um
j−1

(∆x)2
1 ≤ j ≤ N,

−2Um
j + 2Um

j−1

(∆x)2
j = N.

(55)

This transforms (15) into a system of differential equations

∂Um
j

∂t
= D+

x D
−
x U

m
j +R(Um

j ), (56)

which can then be integrated in time to find the solution.

Considerations for choosing the integration scheme for a reaction-diffusion system

are discussed extensively by Ruuth [22]. Typically, theD+
x D

−
x U

m
j term is stiff meaning

explicit schemes usually require prohibitively small timesteps. A fully implicit scheme

can alleviate this restriction however inverting the nonlinear R(Um
j ) term can be

computationally difficult. Ruuth also highlights the importance of a scheme that

strongly damps the error’s high-frequency component, a property commonly used

schemes such as Crank-Nicolson lack [22].

A common approach to avoid these issues is to use an implicit-explicit (IMEX)

scheme, where we treat D+
x D

−
x U

m
j implicitly but R(Um

j ) explicitly. When a second-

order central difference is used for the diffusive term Ruuth recommends the use of

the second-order semi-implicit backward differentiation formula (BDF) scheme, due

to its strong decay of high-frequency error components [22, 1]. For our problem, this

scheme is given by

1

2∆t

(
3Um+1

j − 4Um
j +Um−1

j

)
= DD+

x D
−
x U

m+1
j + 2R(Um

j )−R(Um−1
j ). (57)

The implicit part of the scheme leads to a tridiagonal linear system which can ef-

ficiently inverted using the Thomas algorithm. This scheme was also used to good
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Figure 4: Numerical solution of the Brusselator exhibiting a Turing instability on

a fixed domain of L = 25 with parameter values (D, a, b) = (20, 2, 3). Here the

dominant mode is n = 6.

effect in [2]. Since the scheme is a two-step method, we initially start the scheme with

a single first-order semi-implicit BDF step given by

Um+1
j −Um

j

∆t
= DD+

x D
−
x U

m+1
j +R(Um

j ). (58)

We choose the initial data to be the well-mixed steady-state (a, b/a) plus a small

spatially varying random perturbation to induce diffusion.

6 Results

First, we compare the numerical results against the linear stability analysis for a fixed

domain using the parameter values (L,D, a, b) = (25, 20, 2, 3). From fig. 2 we know

these parameter values satisfy conditions 1–4 as required for a Turing instability.

The linear stability analysis, shown in fig. 3, predicts the dominant wave mode to be

n = 3. The numerical results, as shown in fig. 4, show pattern formation as expected.

The dominant wave mode after the transient dynamics of the system is n = 6 which,

whilst one of the admissible wave modes, is not the dominant mode predicted by the

linear stability analysis. In fact, for the same parameter values we can observe other

dominant modes by using different random initial conditions, as shown in fig. 7 in

appendix A. This phenomenon is also observed in [2]. This shows the limitations

of the linear stability analysis when making predictions about the non-linear system

and also the sensitivity of the dominant mode to the initial conditions. For brevity,

we only report the value of u however v exhibits similar behaviour but is spatially

antiphase to u.
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Next, we consider an exponentially growing domain, given by the growth function

(53), the numerical results of which are shown in fig. 5b. Crampin et al. [4] predicted

by a self-similarity argument, that for exponential growth, the spatial pattern will

undergo a frequency doubling when the domain doubles in length. In fig. 5b we see

that the numerical results agree with this prediction as the first frequency doubling

occurs at x = 41 and the second at x = 82. The mechanism for frequency doubling

depends on the reaction kinetics: for the Schnakenberg system Crampin et al. observe

peak splitting, whereas, for the Gierer-Meinhardt system, they observe peak insertion

[4]. Which of the mechanisms occur depends on the non-linear reaction terms. For

the Brusselator system, fig. 5b shows that frequency doubling occurs through peak

splitting. It is perhaps not surprising that the two systems share similar dynamics as

the Schakenberg system has a similar reaction term to the Brusselator.

We also consider the possibility of linear domain growth, as given by (18). The

numerical results of which are shown in fig. 5a. Again, we observe that the pattern

undergoes frequency doubling by peak splitting. Crampin et al. show that frequency

doubling is not a natural consequence of linear domain growth so we would expect

that, for a longer time scale, the observed frequency doubling would break down [4].

However, in contrast to the exponential growth, we observe that frequency doubling

occurs close to but not exactly when the domain doubles in length. For example,

in fig. 5a the first frequency doubling occurs at x = 58 and the second at x = 112,

slightly under twice the length at which the first frequency doubling occurred at.

Again, the mechanism for frequency doubling is peak splitting.

Inspired by [27], we then extend the case of linear and exponential domain growth

by considering a change of sign in the growth rate γ so that the domain initially grows

before contracting to return to its original starting size. This is shown in fig. 6a and

fig. 6b. Whilst harder to motivate biologically, this leads to interesting dynamics that

have not been widely studied in the literature. As before, when the domain grows

the usual frequency doubling through peak splitting phenomena is observed. When

the domain contacts, as one might expect, we observe frequency halving. However

in contrast, when the domain is contracting, the frequency halving occurs through

a mechanism we term peak termination and not the analogous peak recombining.

This is qualitatively the reverse of the peak insertion behaviour that occurs in the

Gierer-Meinhart system. Further work is required to establish if this peak termination

occurs with other reactant terms such as the Gierer-Meinhart system or whether this

behaviour is unique to the Brusselator (and other similar systems). At this point,

one might be tempted to apply the linear stability analysis performed in section 3.3
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(a) Linearly domain growth given by (52), with γ = 0.01.
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(b) Exponential domain growth given by (53), with γ = 0.004.

Figure 5: Numerical results of the Brusselator system on growing domains with pa-

rameter values (D, a, b, L0) = (20, 2, 3, 25). For both types of growth, we observe

period doubling through peak splitting. The dashed line indicates the size of the

domain at which peak splitting occurs.

to explain this behaviour through a wave number that becomes inadmissible as the

domain shrinks. However, this behaviour occurs far from the steady state, in the

non-linear regime where this linear stability analysis is no longer valid. Furthermore,

if this was the case one would expect that frequency doubling and halving would

occur at the same domain size but in fig. 6 we see that this is not the case. That

said, it is clear that there is a sudden change in the dominant mode which is caused

by the change in domain size.

It is also noteworthy that in all three examples shown in fig. 6 there is an asymme-

try in the domain size at which the peak splitting and peak termination occur. In all

cases investigated, the peak termination occurs at a smaller domain length than the

respective splitting. This shows the pattern can persist on domain lengths smaller

than the length it was created at.

Finally, we consider the case of a domain that repeatedly grows and shrinks, in
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(a) Linear domain growth and contraction with parameters (L0, γ) = (25,±0.01).
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(b) Exponential domain growth and contraction with parameters (L0, γ) = (25,±0.004).
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(c) Sinusoidal domain growth and contraction given by (54) with parameters

(L0, γ, n) = (75, 25, 3).

Figure 6: Numerical results of the Brusselator system with growing and contracting

domains with parameter values (D, a, b) = (20, 2, 3).

this case in a sinusoidal fashion, as shown in fig. 6c. Here we observe a repeated

frequency doubling, followed by frequency halving. As before, the frequency doubling

occurs by peak splitting and the frequency halving occurs through peak termination.

We see this behaviour occurs in every period, at the same domain size.
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7 Discussion

The results in fig. 4 and fig. 7 demonstrate how identical systems with identical

parameter values can exhibit different modes as a result of small changes to the initial

conditions. The inability to reliably select the same pattern under expected random

biological variations in the chemical concentrations (the model initial conditions) is

potentially problematic in the application of Turing’s theory [4]. Domain growth

thereby plays an important role in creating so-called robustness. This is because,

between frequency doublings, the pattern remains unchanged despite the changing

domain size.

It is possible to extend the results shown in this report to non-uniform domain

growth, as demonstrated in [5]. However, there appears to be very little work investi-

gating non-uniform domain contraction so further research is required to determine if

the peak termination we have reported also occurs in the case of non-uniform contrac-

tion. However, arguably more relevant to developmental biology is when the evolution

of the domain is concentration-driven, as explored in [11]. They note that frequency

doubling typically still occurs for slow growth however fast concentration-dependent

evolution and domain contraction leads to unexpected behaviour. Hence, developing

a better theoretical understanding of the results we have reported for contracting

domains could help to enhance the understand of this behaviour.

Whilst contracting domains are harder to biologically motivate when compared to

domain growth, there has been recent interest in the application of reaction-diffusion

models to vegetation patterning [6]. In these models, it could be possible to justify

a contracting domain due to human activity or ecological changes so understanding

the effects of a contracting domain could provide additional insight. However, one

current barrier to this application is the observed sudden termination of peaks as the

domain shrinks is not representative of a slow process like vegetation growth. Further

investigation would be needed to determine if the equivalent of peak termination

occurs in two dimensions and whether the reaction terms used in vegetation models

exhibit this mechanism of frequency halving.

In this report, we have only considered the Turing instability as a mechanism for

pattern formation however current literature is beginning to look beyond at other

mechanisms which produce localised patterns. For example, in their review paper,

Champneys et al. highlight three additional mechanisms for pattern formation beyond

the Turing instability [3]. These are Maxwell fronts, wave pinning and homoclinic

snaking. For example, it has been shown that it is possible for homoclinic snaking

17



to occur in the Brusselator system [26]. However, so far there has been little work to

consider the effect of a changing domain on these localised structures.

8 Conclusion

In this report, we have reproduced the necessary conditions for a Turing instability

in a two-chemical system and have shown both analytically and numerically that the

Brusselator system is capable of undergoing a Turing instability. Through the use of

a Lagrangian transform, growing domains were investigated and a frequency doubling

pattern was found in agreement with previous literature [4]. Finally, we showed that

on domains that both grow and contract, there is an asymmetry between both the

mechanism and location at which the frequency doubling/halving pattern takes place.

Further work is required to understand why, in the Brusselator system, frequency

doubling occurs by peak splitting but frequency halving occurs by peak termination

and why these are not triggered at the same domain size.
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Appendices

A Additional Figures
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Figure 7: Numerical solution of the Brusselator exhibiting a Turing instability on

a fixed domain of L = 25 with parameter values (D, a, b) = (20, 2, 3). Here the

dominant wave mode is n = 5.

19



References

[1] U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton. “Implicit-Explicit Meth-

ods for Time-Dependent Partial Differential Equations”. In: SIAM Journal

on Numerical Analysis 32.3 (June 1995), pp. 797–823. issn: 1095-7170. doi:

10.1137/0732037.

[2] C. H. L. Beentjes. Pattern Formation Analysis in the Schnakenberg Model. Tech.

rep. University of Oxford, UK, 2015.

[3] A. R. Champneys et al. “Bistability, Wave Pinning and Localisation in Natural

Reaction–Diffusion Systems”. In: Physica D: Nonlinear Phenomena 416 (Feb.

2021), p. 132735. issn: 0167-2789. doi: 10.1016/j.physd.2020.132735.

[4] E. Crampin, E. A. Gaffney, and P. K. Maini. “Reaction and Diffusion on

Growing Domains: Scenarios for Robust Pattern Formation”. In: Bulletin of

Mathematical Biology 61.6 (Oct. 1999), pp. 1093–1120. issn: 0092-8240. doi:

10.1006/bulm.1999.0131.

[5] E. Crampin, W. W. Hackborn, and P. K. Maini. “Pattern Formation in Re-

action–Diffusion Models with Nonuniform Domain Growth”. In: Bulletin of

Mathematical Biology 64.4 (July 2002), pp. 747–769. issn: 0092-8240. doi:

10.1006/bulm.2002.0295.

[6] K. Gowda et al. “Assessing the Robustness of Spatial Pattern Sequences in

a Dryland Vegetation Model”. In: Proceedings of the Royal Society A: Mathe-

matical, Physical and Engineering Sciences 472.2187 (Mar. 2016), p. 20150893.

issn: 1471-2946. doi: 10.1098/rspa.2015.0893.

[7] D. S. Grebenkov and B. T. Nguyen. “Geometrical Structure of Laplacian Eigen-

functions”. In: SIAM Review 55.4 (Jan. 2013), pp. 601–667. issn: 1095-7200.

doi: 10.1137/120880173.

[8] P. Grindrod. Patterns and Waves. en. Oxford Applied Mathematics & Com-

puting Science Series. Oxford, England: Clarendon Press, Sept. 1991.

[9] P. Hartman. “A Lemma in the Theory of Structural Stability of Differential

Equations”. In: Proceedings of the American Mathematical Society 11.4 (1960),

pp. 610–620. issn: 1088-6826. doi: 10.1090/s0002-9939-1960-0121542-7.
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